Auto calibration of a cone-beam-CT.
نویسندگان
چکیده
PURPOSE This paper introduces a novel autocalibration method for cone-beam-CTs (CBCT) or flat-panel CTs, assuming a perfect rotation. The method is based on ellipse-fitting. Autocalibration refers to accurate recovery of the geometric alignment of a CBCT device from projection images alone, without any manual measurements. METHODS The authors use test objects containing small arbitrarily positioned radio-opaque markers. No information regarding the relative positions of the markers is used. In practice, the authors use three to eight metal ball bearings (diameter of 1 mm), e.g., positioned roughly in a vertical line such that their projection image curves on the detector preferably form large ellipses over the circular orbit. From this ellipse-to-curve mapping and also from its inversion the authors derive an explicit formula. Nonlinear optimization based on this mapping enables them to determine the six relevant parameters of the system up to the device rotation angle, which is sufficient to define the geometry of a CBCT-machine assuming a perfect rotational movement. These parameters also include out-of-plane rotations. The authors evaluate their method by simulation based on data used in two similar approaches [L. Smekal, M. Kachelriess, S. E, and K. Wa, "Geometric misalignment and calibration in cone-beam tomography," Med. Phys. 31(12), 3242-3266 (2004); K. Yang, A. L. C. Kwan, D. F. Miller, and J. M. Boone, "A geometric calibration method for cone beam CT systems," Med. Phys. 33(6), 1695-1706 (2006)]. This allows a direct comparison of accuracy. Furthermore, the authors present real-world 3D reconstructions of a dry human spine segment and an electronic device. The reconstructions were computed from projections taken with a commercial dental CBCT device having two different focus-to-detector distances that were both calibrated with their method. The authors compare their reconstruction with a reconstruction computed by the manufacturer of the CBCT device to demonstrate the achievable spatial resolution of their calibration procedure. RESULTS Compared to the results published in the most closely related work [K. Yang, A. L. C. Kwan, D. F. Miller, and J. M. Boone, "A geometric calibration method for cone beam CT systems," Med. Phys. 33(6), 1695-1706 (2006)], the simulation proved the greater accuracy of their method, as well as a lower standard deviation of roughly 1 order of magnitude. When compared to another similar approach [L. Smekal, M. Kachelriess, S. E, and K. Wa, "Geometric misalignment and calibration in cone-beam tomography," Med. Phys. 31(12), 3242-3266 (2004)], their results were roughly of the same order of accuracy. Their analysis revealed that the method is capable of sufficiently calibrating out-of-plane angles in cases of larger cone angles when neglecting these angles negatively affects the reconstruction. Fine details in the 3D reconstruction of the spine segment and an electronic device indicate a high geometric calibration accuracy and the capability to produce state-of-the-art reconstructions. CONCLUSIONS The method introduced here makes no requirements on the accuracy of the test object. In contrast to many previous autocalibration methods their approach also includes out-of-plane rotations of the detector. Although assuming a perfect rotation, the method seems to be sufficiently accurate for a commercial CBCT scanner. For devices which require higher dimensional geometry models, the method could be used as a initial calibration procedure.
منابع مشابه
Accurate technique for complete geometric calibration of cone-beam computed tomography systems.
Cone-beam computed tomography systems have been developed to provide in situ imaging for the purpose of guiding radiation therapy. Clinical systems have been constructed using this approach, a clinical linear accelerator (Elekta Synergy RP) and an iso-centric C-arm. Geometric calibration involves the estimation of a set of parameters that describes the geometry of such systems, and is essential...
متن کاملA Calibration Method for Misaligned Scanner Geometry in Cone-beam Computed Tomography
Computed Tomography (CT) images often suffer from artifacts caused by misaligned scanner geometry of CT system. Calibration and correction must be done before image reconstruction. A method for calibration of misaligned scanner geometry in cone-beam CT with single-circle orbit is proposed. In this method, a four-point phantom is used to estimate a set of parameters that describe the geometry of...
متن کاملCone Beam CT Evaluation of the Bony Changes in the Temporomandibular Joint and the Association with the Clinical Symptoms of Temporomandibular Joint Disorders
Introduction: Temporomandibular joint (TMJ) disorders are among the most prevalent abnormalities of the jaw, which affect the masticatory system, including the muscles, TMJ, and tendons. Clinical examination alone cannot determine the cause of temporomandibular disorder (TMD). In most cases, the cause of TMD and a proper treatment plan are determined based on imaging modalities. The present stu...
متن کاملSelf-calibration of geometric and radiometric parameters for cone-beam computed tomography
Thanks to the advances in parallel processing hardware, iterative algorithms for cone beam reconstruction are now available with computation times acceptable for clinical use. At the same time they are able to accomodate more accurately the physical effects underlying the X-Ray imaging process. Many parameters are involved, which need to be precisely calibrated in order to achieve an accurate 3...
متن کاملGeometric Parameters Estimation and Calibration in Cone-Beam Micro-CT
The quality of Computed Tomography (CT) images crucially depends on the precise knowledge of the scanner geometry. Therefore, it is necessary to estimate and calibrate the misalignments before image acquisition. In this paper, a Two-Piece-Ball (TPB) phantom is used to estimate a set of parameters that describe the geometry of a cone-beam CT system. Only multiple projections of the TPB phantom a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical physics
دوره 39 10 شماره
صفحات -
تاریخ انتشار 2012